用户工具

站点工具

本页面的其他翻译:
  • zh

atk:电极化

这是本文档旧的修订版!


电极化

铁电 BaTiO3 的自发极化

介绍

铁电(FE)材料具有自发电极化的特性,可以通过施加外部电场实现逆转。FE 材料可应用于电容器、铁电随机存取存储器(RAM),最近在铁电隧道结(FTJ)中展示出巨大的电阻效应[1] [2]

研究最多的 FE 材料之一是钛酸钡(BaTiO3),也就是本教程的主题。在继续计算之前,让我们先简要总结一些核心理论概念。

电极化的现代理论

FE 材料的理论认识由所谓的电极化现代理论来描述[3]。通常将材料的极化分成电子和离子两部分。后者可以使用简单的经典静电点电荷求和计算获得。

$$\mathbf{P}_i = \frac{|e|}{\Omega}\sum_\nu Z^\nu_\mathrm{ion} \mathbf{r}^\nu,$$

$Z^\nu_\mathrm{ion}$ 和 $\mathbf{r}^\nu$ 是原子 $\nu$ 的价电荷和位置矢量,$\Omega$ 为单胞体积,求和范围为单胞里的所有离子。

电子对电极化的贡献可从如下公式得到[3]

$$\mathbf{P}_e = -\frac{2|e|i}{(2\pi)^3}\int_A d\mathbf{k}_\bot\sum_{n=1}^M\int_0^{G_\parallel}\langle u_{\mathbf{k},n}| \frac{\partial}{\partial k_\parallel}|u_{\mathbf{k},n}\rangle dk_\parallel,$$

这里的求和范围为所有的占据能带,$k_\parallel$ 平行于极化方向,$G_\parallel$ 为相同方向上的倒易晶格矢量。$|u_{\mathbf{k},n}\rangle$ 态为Bloch 函数的晶胞周期性部分,$\psi_{\mathbf{k},n}(\mathbf{r}) = u_{n,\mathbf{k}}(\mathbf{r})e^{i\mathbf{k}\cdot\mathbf{r}}$。最后一个积分被称为贝利相位。 垂直方向上的积分易与几个 k 点交叉。而平行方向上的 k 点数量应该更大。

总的电极化为简单地电子贡献部分和离子贡献部分的加和,

$$\mathbf{P}_t = \mathbf{P}_i + \mathbf{P}_e.$$

参考文献[3]中的一个重要发现为电极化是一个多值函数,而实际上形成了一个晶格。原因在于电子极化 $\mathbf{P}_e$ 是由对 $2\pi$ 取模计算得到的贝利相位确定的。同样地,如果所有的离子在任一方向上被晶格常数取代,离子贡献部分 $\mathbf{P}_i$ 就会得到一个不同的值。

因此,电极化是一个周期函数,周期称为极化量子,$\mathbf{P}_q^j=\frac{|e|\mathbf{R}^j}{\Omega}$,$\mathbf{P}_q^j=\frac{|e|\mathbf{R}^j}{\Omega}$ 是电子电荷,$\mathbf{R}^j$ 是指晶格矢量 $j$,$\Omega$ 为单胞体积。

鉴于极化的多值性,只有极化差异也许并不奇怪,两个不同结构之间的 $\Delta \mathbf{P}$ 是具有明确性的。

ATK 分别计算和报告电子贡献部分和离子贡献部分,还有极化量子。

重要

注意,该操作对于金属系统不起作用,并且在可能的情况下应该优选正交晶胞。在 2D 系统和非正交单元中使用时应彻底地测试使用的设置和结果。

铁电 BaTiO3 的自发极化

BaTiO3 的晶体结构

钛酸钡(BaTiO3)室温下为四方晶体结构,单胞在 c 方向上略微伸长。内应力进一步使 c 方向上的分数坐标偏离其高对称位置。在本教程中,我们使用从 Inorganic Crystal Structure Database (ICSD)中获得的实验晶格常数和坐标。以下 QuantumATK 格式给出的结构如下[4]

# Set up lattice
lattice = SimpleTetragonal(3.9945*Angstrom, 4.0335*Angstrom)
 
# Define elements
elements = [Barium, Titanium, Oxygen, Oxygen, Oxygen]
 
# Define coordinates
fractional_coordinates = [[ 0.      ,  0.      ,  0.      ],
                          [ 0.5     ,  0.5     ,  0.51427 ],
                          [ 0.5     ,  0.5     ,  0.974477],
                          [ 0.5     ,  0.      ,  0.487618],
                          [ 0.      ,  0.5     ,  0.487618]]
 
# Set up configuration
bulk_configuration = BulkConfiguration(
    bravais_lattice=lattice,
    elements=elements,
    fractional_coordinates=fractional_coordinates
)

计算设置

在本节,您将为计算 BaTiO3 晶体电极化设置采用 局域密度近似(LDA)的 DFT 计算。您将使用 QuantumATK 进行计算,建议先参阅 QuantumATK tutorial 熟悉基本工作流程。

启动 QuantumATK,为本例创建一个新项目,用一个新的空目录。选择上面 python 脚本中的 BaTiO3 结构文本并拖拽到 Script Generator 按钮 上。该工具将解译脚本并打开导入的结构。

提示

或者,您可以将脚本保存到项目目录中,然后将文件从 QuantumATK 主窗口拖放 Script Generator。

分析结果

注解

参考

atk/电极化.1543323338.txt.gz · 最后更改: 2018/11/27 20:55 由 xie.congwei

© 2014-2022 费米科技(京ICP备14023855号