用户工具

站点工具


adf:uv

差别

这里会显示出您选择的修订版和当前版本之间的差别。

到此差别页面的链接

两侧同时换到之前的修订记录前一修订版
后一修订版
前一修订版
adf:uv [2017/04/04 21:15] – [激发态分析] liu.junadf:uv [2017/10/18 10:49] (当前版本) – [参数设置] liu.jun
行 31: 行 31:
 如上图所示,对于激发态的计算,一般而言只需要设置两个参数:Type of excitations和Number of excitations。 如上图所示,对于激发态的计算,一般而言只需要设置两个参数:Type of excitations和Number of excitations。
  
-前者用于设置激发的类型:对于紫外可见吸收,基态为单重态(S0态),激发态仍然为单重态(S1态);对于此例,选择AllowOnly与选择SingletOnly是等价的。+前者用于设置激发的类型:对于紫外可见吸收,基态为单重态(S0态),激发态仍然为单重态(Sn态);对于此例,选择AllowOnly与选择SingletOnly是等价的。
  
 后者用于设置需要计算的激发态的个数:例如此例中设置为40,表示希望得到S1、S2……S40等40个激发态。理论上说,这个数值越大,计算越精确,但内存的需求也急剧增长。一个比较好的权衡,就是设置为40~60左右。 后者用于设置需要计算的激发态的个数:例如此例中设置为40,表示希望得到S1、S2……S40等40个激发态。理论上说,这个数值越大,计算越精确,但内存的需求也急剧增长。一个比较好的权衡,就是设置为40~60左右。
行 97: 行 97:
 **3)**激发态的质量:一般而言,例如B3LYP对于有机体系的低激发态,可靠性往往都是不错的,但更高的激发态,可靠性则会变差,越高的激发态,可靠性越差。其主要原因,往往也在于DFT方法本身,对于较高的空轨道能量、较内层的占据轨道能量的计算,效果都比较差。越是离HOMO-LUMO远的轨道,能量差的越多。更深层次的原因则是:DFT原则上,只有HOMO、LUMO的能级与真实的IP、EA有对应关系,而其他能级实际上与电子能级并没有对应关系;我们把DFT能级当作电子能级来使用,实际上是一种很粗糙的近似。 **3)**激发态的质量:一般而言,例如B3LYP对于有机体系的低激发态,可靠性往往都是不错的,但更高的激发态,可靠性则会变差,越高的激发态,可靠性越差。其主要原因,往往也在于DFT方法本身,对于较高的空轨道能量、较内层的占据轨道能量的计算,效果都比较差。越是离HOMO-LUMO远的轨道,能量差的越多。更深层次的原因则是:DFT原则上,只有HOMO、LUMO的能级与真实的IP、EA有对应关系,而其他能级实际上与电子能级并没有对应关系;我们把DFT能级当作电子能级来使用,实际上是一种很粗糙的近似。
  
 +**4)**一般主要从吸收谱中波长较长的部分进行对照,波长较短的部分,跟我们计算的激发态的个数有关(默认计算10个激发态)。如果只计算少量激发态,实际上得到的吸收峰丢失了大量的短波部分的信息。
 =====激发态的结构优化===== =====激发态的结构优化=====
  
 参考:[[adf:geooptofsinglet]] 参考:[[adf:geooptofsinglet]]
adf/uv.txt · 最后更改: 2017/10/18 10:49 由 liu.jun

© 2014-2022 费米科技(京ICP备14023855号