用户工具

站点工具


adf:bandhighlight

差别

这里会显示出您选择的修订版和当前版本之间的差别。

到此差别页面的链接

两侧同时换到之前的修订记录前一修订版
后一修订版
前一修订版
上一修订版两侧同时换到之后的修订记录
adf:bandhighlight [2020/07/28 10:08] – [其他] liu.junadf:bandhighlight [2021/07/12 11:00] – [2021] liu.jun
行 7: 行 7:
   - 不依赖于赝势,计算元素周期表中所有元素   - 不依赖于赝势,计算元素周期表中所有元素
 =====部分代表性文章===== =====部分代表性文章=====
 +  * [[https://pubs.acs.org/doi/abs/10.1021/acs.inorgchem.0c00120|相对论对Lr的影响:Lr在Ta表面吸附与Lu和Tl比较(Inorg. Chem. 2020)]]
 +  * [[https://pubs.acs.org/doi/abs/10.1021/acs.jpclett.0c03345|10K下冰中质子空穴转移传递电子:表面OH自由基的作用(J. Phys. Chem. Lett. 2021)]]
 +  * [[adf:bandhighlight202006|神经毒剂模拟物甲基对氧磷在光活性纳米织物上选择性可见光驱动毒性降解(Appl Catal B-Environ 2020)]]
   * [[https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.202005047|分子隧道结量子干涉的原位开关(Angew. Chem. Int. Ed. 2020)]]   * [[https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.202005047|分子隧道结量子干涉的原位开关(Angew. Chem. Int. Ed. 2020)]]
   * [[https://www.nature.com/articles/s41563-020-0670-3|WS2-WSe2异质层间激子扩散扭曲角依赖(Nat. Mat. 2020)]]   * [[https://www.nature.com/articles/s41563-020-0670-3|WS2-WSe2异质层间激子扩散扭曲角依赖(Nat. Mat. 2020)]]
   * [[https://www.fermitech.com.cn/news/bandhighlight-202002|具有半导顺磁态的二维COF材料(JACS 2020)]]   * [[https://www.fermitech.com.cn/news/bandhighlight-202002|具有半导顺磁态的二维COF材料(JACS 2020)]]
-  * [[https://www.fermitech.com.cn/ams/ams_application/bandhighlight-201904|电子耦合如何决定分子晶体不同晶相的能量稳定性?Chem. Mater. 2019]]+  * [[https://www.fermitech.com.cn/ams/ams_application/bandhighlight-201904|电子耦合如何决定分子晶体不同晶相的能量稳定性?(Chem. Mater. 2019)]] 
 +  * [[https://www.fermitech.com.cn/ams/ams_application/bandhighlight-201906|替代卤化铅钙钛矿的层状碘化铋有机-无机结构的合成以及层间结合机理研究(Chem. Commun. 2019)]]
   * [[https://iopscience.iop.org/article/10.1088/2631-7990/ab5d8a/pdf|pEDA分析用于电子输运研究,《极端制造》2019]]   * [[https://iopscience.iop.org/article/10.1088/2631-7990/ab5d8a/pdf|pEDA分析用于电子输运研究,《极端制造》2019]]
   * [[https://www.fermitech.com.cn/ams/ams_application/bandhighlight-201902|原位观察活性MoS2模型催化剂加氢脱硫(Nature Comm.,2019)]]   * [[https://www.fermitech.com.cn/ams/ams_application/bandhighlight-201902|原位观察活性MoS2模型催化剂加氢脱硫(Nature Comm.,2019)]]
-  * [[http://www.fermitech.com.cn/adf/adf_application/highlight-201902|费托反应研究最新进展(Nature Comm.,2019)]]+  * [[https://www.fermitech.com.cn/ams/ams_application/bandhighlight-201901|费托反应研究最新进展(Nature Comm.,2019)]]
   * [[https://journals.aps.org/prx/pdf/10.1103/PhysRevX.8.021076|核四极共振调制:频率选择性MRI造影剂设计新方法(Phy. Rev. X,2018)]]   * [[https://journals.aps.org/prx/pdf/10.1103/PhysRevX.8.021076|核四极共振调制:频率选择性MRI造影剂设计新方法(Phy. Rev. X,2018)]]
   * [[http://www.fermitech.com.cn/adf/adf_application/highlight-077|诺贝尔奖得主 Roald Hoffmann对金属卤化物钙钛矿中成键“镜像”现象的研究(JACS, 2018)]]   * [[http://www.fermitech.com.cn/adf/adf_application/highlight-077|诺贝尔奖得主 Roald Hoffmann对金属卤化物钙钛矿中成键“镜像”现象的研究(JACS, 2018)]]
行 22: 行 26:
  
 =====非平衡格林函数领域===== =====非平衡格林函数领域=====
 +
 +  * [[https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.0c05781|大面积单分子结中Acenes穿隧穿的分子间效应(J. Phys. Chem. C 2020)]]
   * [[https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.202005047|分子隧道结量子干涉的原位开关(Angew. Chem. Int. Ed. 2020)]]   * [[https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.202005047|分子隧道结量子干涉的原位开关(Angew. Chem. Int. Ed. 2020)]]
 =====其他===== =====其他=====
 +====2021==== 
 +  * [[https://iopscience.iop.org/article/10.1149/1945-7111/ac1210/meta|锂在双层屈曲硼酚中的插层:第一性原理展望(Journal of The Electrochemical Society 2021)]]
 +  * [[https://www.sciencedirect.com/science/article/abs/pii/S0360319921022898|Computational insights of alkali metal (Li / Na / K) atom decorated buckled bismuthene for hydrogen storage(International Journal of Hydrogen Energy 2021)]]
 +  * [[https://www.degruyter.com/document/doi/10.1515/znb-2021-0041/html|卡普加龙内的菱铁矿(. Naturforsch. 2021)]]
 +  * [[https://www.sciencedirect.com/science/article/abs/pii/S0013468621009312|具有优异循环性能的锂离子电池负极:双层β-铋(Electrochimica Acta 2021)]]
 +  * [[https://link.springer.com/chapter/10.1007/978-3-030-62226-8_12|纳米晶尖晶石锰铁氧体MnFe2O4的合成、电子结构及其磁热疗应用评价《Functional Properties of Advanced Engineering Materials and Biomolecules 》]]
 +  * [[https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.1c00511|使用DFT与固态NMR探测含氮石墨碳中的原子环境(J. Phys. Chem. C 2021)]]
 +  * [[https://link.springer.com/article/10.1007/s11664-021-08876-x|过渡金属掺杂SiC膜的碘吸附:基于DFT的化学键分析(J. Electron. Mater. 2021)]]
 +  * [[https://www.sciencedirect.com/science/article/abs/pii/S0921510721000210|A DFT study of bismuthene as anode material for alkali-metal (Li/Na/K)-ion batteries(Materials Science and Engineering: B 2021)]]
 +  * [[https://pubs.acs.org/doi/abs/10.1021/acs.jpclett.0c03345|10K下冰中质子空穴转移传递电子:表面OH自由基的作用(J. Phys. Chem. Lett. 2021)]]
 +====2020====
 +  * [[https://www.sciencedirect.com/science/article/pii/S2468023020307197|射频磁控溅射沉积羟基磷灰石和含硅羟基磷灰石涂层的从头计算和划痕试验研究(Surfaces and Interfaces 2020)]]
 +  * [[https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.0c04673|杂环芳烃对吡嗪在Ge(100)-2×1表面吸附的影响(J. Phys. Chem. C 2020)]]
 +  * [[https://onlinelibrary.wiley.com/doi/abs/10.1002/qua.26452|拓扑型稀土六硼化物f轨道相关带拓扑的第一性原理研究(International Journal of Quantum Chemistry 2020)]]
 +  * [[https://www.sciencedirect.com/science/article/abs/pii/S100495412030375X|化学环化过程中C1系列分子与NiO氧载体表面的内在相互作用(中国化学工程学报 2020)]]
 +  * [[https://pubs.rsc.org/en/content/articlepdf/2020/ma/d0ma00461h|直接连接金属卟啉:对生物启发材料的探索(materials advances 2020)]]
 +  * [[https://www.sciencedirect.com/science/article/abs/pii/S1872206720636178|负载型离子液体相(SILP)金基催化剂上乙炔氢氯化反应:氯化氢化学活化对阳离子金的稳定作用及其机理(催化学报 2020)]]
   * [[https://www.tandfonline.com/doi/abs/10.1080/08927022.2020.1778171|不饱和纳米多孔石墨烯气体吸附(Mol. Simulat. 2020)]]   * [[https://www.tandfonline.com/doi/abs/10.1080/08927022.2020.1778171|不饱和纳米多孔石墨烯气体吸附(Mol. Simulat. 2020)]]
   * [[https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.0c00915|Chemisorption and Physisorption at the Metal/Organic Interface: Bond Energies of Naphthalene and Azulene on Coinage Metal Surfaces(. Phys. Chem. C 2020)]]   * [[https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.0c00915|Chemisorption and Physisorption at the Metal/Organic Interface: Bond Energies of Naphthalene and Azulene on Coinage Metal Surfaces(. Phys. Chem. C 2020)]]
 +
 +====2019====
 +  * [[https://link.springer.com/article/10.1007/s11581-019-03028-y|Experimental, theoretical, and surface study for corrosion inhibition of mild steel in 1 M HCl by using synthetic anti-biotic derivatives (Ionics, 2019)]]
 +  * [[https://www.sciencedirect.com/science/article/abs/pii/S0169433219305641|Evaluation and modeling of the surface characteristics of troilite (FeS) (Applied Surface Science 2019)]]
 +  * [[https://pubs.acs.org.ccindex.cn/doi/full/10.1021/acsmaterialslett.9b00013|Prediction of Superconductivity in Porous, Covalent Triazine Frameworks, ACS Materials Letters (2019)]]
 +  * [[https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.9b01842|Unconventional Thermally Activated Indirect to Direct Radiative Recombination of Electrons and Holes in Tin Disulfide Two-Dimensional van der Waals Material, J. Phys. Chem. C (2019)]]
 +  * [[https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.8b11411|Strong Variation of Electronic Properties of MoS2 and WS2 Nanotubes in the Presence of External Electric Fields, J. Phys. Chem. C,  123, 6, 3892-3899 (2019)]]
 +
 +====早期====
 +  * [[https://www.sciencedirect.com/science/article/abs/pii/S0022286018313504|Antibacterial activity of $Mg_{1-x}Ni_xO$(x=0.5) nano-solid solution; experimental and computational approach (Journal of Molecular Structure 2019)]]
 +  * [[https://pubs.acs.org/doi/abs/10.1021/acs.inorgchem.8b00101|Reactivity of Superheavy Elements Cn, Nh, and Fl and Their Lighter Homologues Hg, Tl, and Pb, Respectively, with a Gold Surface from Periodic DFT Calculations (Inorg. Chem. 2018)]]
 +  * [[https://pubs.rsc.org/en/content/articlehtml/2014/cp/c4cp00966e|Electron transport in MoWSeS monolayers in the presence of an external electric field(Physical Chemistry Chemical Physics 2014)]]
  

© 2014-2022 费米科技(京ICP备14023855号