用户工具

站点工具

本页面的其他翻译:
  • zh

adf:batteryrelated

这是本文档旧的修订版!


上级目录

电池/能源/光伏[目录]

精选

  1. 二维富碳碳化钛(TiC3)作为钾离子电池大容量阳极, Appl. Surf. Sci., 2024, Volume 659, 30 June 2024, 159879, DOI: 10.1016/j.apsusc.2024.159879
  2. 【国内课题组】从被衬底或孤立的金属原子、团簇模型理解氢经济, Fundamental Research, 2023, DOI: 10.1016/j.fmre.2023.10.011
  3. 【国内课题组】柔性准固态水性锌离子电池:设计原理、功能化策略和应用, Advanced Energy Materials 2023, DOI: 10.1002/aenm.202300250
  4. 钠离子电池羧酸盐阳极材料性能的空间效应, Small, 2023, DOI: 10.1002/smll.202308113
  5. 全溶液处理半透明有机太阳能电池PEDOT顶部电极的原位掺杂, ACS Appl. Mater. Interfaces 2023, DOI: 10.1021/acsami.3c09984
  6. B.M. Savoie et al., Unequal Partnership: Asymmetric Roles of Polymeric Donor and Fullerene Acceptor in Generating Free Charge, J. Am. Chem. Soc. 138, 2876-2884 (2014)
  7. S.-H. Choi et al., Amorphous Zinc Stannate (Zn2SnO4) Nanofibers Networks as Photoelectrodes for Organic Dye-Sensitized Solar Cells, Adv. Funct. Mater. 1-10 (2013)

2024

  1. B4C3作为锂离子电池电位电极材料的应用前景, Materials Science in Semiconductor Processing, Volume 176, 15 June 2024, 108320, DOI: 10.1016/j.mssp.2024.108320
  2. 硒化镉团簇的吸附:一种利用扶手椅石墨烯纳米带增强太阳能转换的新方法,AIP Advances, 2024, 14, 035020, DOI: 10.1063/5.0187458
  3. 三硒亚砜基有机分子作为新一代太阳能电池供体和空穴传输材料, Journal of Physics and Chemistry of Solids, 2024, 111961, DOI: 10.1016/j.jpcs.2024.111961
  4. Al2CO双层阳极材料在镁离子电池中的电位解析及对锂离子电池的不适用性, Journal of Alloys and Compounds, 2024, Volume 981, 25 April 2024, 173697, DOI: 10.1016/j.jallcom.2024.173697
  5. 增强具有辅助配体的三吡啶基Ru/Os配合物的近红外吸收以激活染料敏化太阳能电池中的自旋禁止跃迁:TDDFT研究, J. Phys. Chem. A, 2024, DOI: 10.1021/acs.jpca.3c07554
  6. 锂在双层TiC3中吸附和嵌入的计算, Electrochimica Acta, 2024, DOI: 10.1016/j.electacta.2024.143763

2023

  1. 【中南大学肖劲-仲奇凡教授课题组】锂离子电池用导电炭黑微观结构建模及基于ReaxFF与DFT的电化学反应机理研究, Energy&Fuels, 2023
  2. 用于染料敏化太阳能电池的新型苯并咪唑基钌(II)染料的合成及其光谱和理论评价, Journal of Molecular Structure, 2023, DOI: 10.1016/j.molstruc.2023.135860
  3. Polyoxometalate–Polymer Hybrid Artificial Layers for Ultrastable and Reversible Zn Metal Anodes, Chemical Engineering Journal, 2023, 143644
  4. 镁修饰锑烯储氢材料的DFT展望, Materials Science in Semiconductor Processing, 2023,Volume 161, July 2023, 107471, DOI:10.1016/j.mssp.2023.107471

2022

2021

2020

2019

2018

更早

  1. M. Barrera et al., On the performance of ruthenium dyes in dye sensitized solar cells: a free cluster approach based on theoretical indexes, J. Molecular Model. 22:118 (2016)
  2. U. Mehmood et al., Theoretical study of benzene/thiophene based photosensitizers for dye sensitized solar cells (DSSCs), Dyes and Pigments 118, 152 (2015)
  3. A. Solovyeva, M. Pavanello, and J. Neugebauer, Describing long-range charge-separation processes with - subsystem density-functional theory J. Chem. Phys., 140, 164103 (2014). See also Highlight.
  4. E. Ronca, F. de Angelis, and S. Fantacci, TDDFT Modeling of Spin-Orbit Coupling in Ru and Os Solar Cell Sensitizers, J. Phys. Chem. C, 118, 17067-17078 (2014).
  5. S. Fantacci, E. Ronca, and F. de Angelis, Impact of Spin-Orbit Coupling on Photocurrent Generation in Ruthenium Dye-Sensitized Solar Cells, J. Phys. Chem. Lett. 5, 375-380 (2014)
  6. D. Jolly et al., A Robust Organic Dye for Dye Sensitized Solar Cells Based on Iodine/Iodide Electrolytes Combining High Efficiency and Outstanding Stability, Scientific Reports, 4, 4033 (2014)
  7. N. Renaud, P. A. Sherratt, M. A. Ratner, Mapping the Relation between Stacking Geometries and Singlet Fission Yield in a Class of Organic Crystals J. Phys. Chem. Lett. 4, 1065-1069 (2013)
  8. J. Wang et al., Theoretical studies on organoimido-substituted hexamolybdates dyes for dye-sensitized solar cells (DSSC) Dyes and Pigments 99, 440-446 (2013)
  9. X. Zarate et al., Theoretical Study of Sensitizer Candidates for Dye-Sensitized Solar Cells: Peripheral Substituted Dizinc Pyrazinoporphyrazine-Phthalocyanine Complexes J. Phys. Chem. A 117, 430-438 (2013).
  10. C. König and J. Neugebauer, Exciton Coupling Mechanisms Analyzed with Subsystem TDDFT: Direct vs. Pseudo Exchange Effects, J. Phys. Chem. B 117, 3480 (2013).
  11. C. König et al., Direct determination of exciton couplings from subsystem time-dependent density-functional theory within the Tamm-Dancoff approximation, J. Chem. Phys.138, 034104 (2013).
  12. P. S. Johnson et al., Electronic structure of Fe- vs. Ru-based dye molecules, J. Chem. Phys. 138, 044709 (2013)
adf/batteryrelated.1710513867.txt.gz · 最后更改: 2024/03/15 22:44 由 liu.jun

© 2014-2022 费米科技(京ICP备14023855号