-
-
-
M. Barrera et al., On the performance of ruthenium dyes in dye sensitized solar cells: a free cluster approach based on theoretical indexes, J. Molecular Model. 22:118 (2016)
-
U. Mehmood et al., Theoretical study of benzene/thiophene based photosensitizers for dye sensitized solar cells (DSSCs), Dyes and Pigments 118, 152 (2015)
-
A. Solovyeva, M. Pavanello, and J. Neugebauer, Describing long-range charge-separation processes with - subsystem density-functional theory J. Chem. Phys., 140, 164103 (2014). See also Highlight.
E. Ronca, F. de Angelis, and S. Fantacci, TDDFT Modeling of Spin-Orbit Coupling in Ru and Os Solar Cell Sensitizers, J. Phys. Chem. C, 118, 17067-17078 (2014).
S. Fantacci, E. Ronca, and F. de Angelis, Impact of Spin-Orbit Coupling on Photocurrent Generation in Ruthenium Dye-Sensitized Solar Cells, J. Phys. Chem. Lett. 5, 375-380 (2014)
D. Jolly et al., A Robust Organic Dye for Dye Sensitized Solar Cells Based on Iodine/Iodide Electrolytes Combining High Efficiency and Outstanding Stability, Scientific Reports, 4, 4033 (2014)
N. Renaud, P. A. Sherratt, M. A. Ratner, Mapping the Relation between Stacking Geometries and Singlet Fission Yield in a Class of Organic Crystals J. Phys. Chem. Lett. 4, 1065-1069 (2013)
J. Wang et al., Theoretical studies on organoimido-substituted hexamolybdates dyes for dye-sensitized solar cells (DSSC) Dyes and Pigments 99, 440-446 (2013)
X. Zarate et al., Theoretical Study of Sensitizer Candidates for Dye-Sensitized Solar Cells: Peripheral Substituted Dizinc Pyrazinoporphyrazine-Phthalocyanine Complexes J. Phys. Chem. A 117, 430-438 (2013).
C. König and J. Neugebauer, Exciton Coupling Mechanisms Analyzed with Subsystem TDDFT: Direct vs. Pseudo Exchange Effects, J. Phys. Chem. B 117, 3480 (2013).
C. König et al., Direct determination of exciton couplings from subsystem time-dependent density-functional theory within the Tamm-Dancoff approximation, J. Chem. Phys.138, 034104 (2013).
P. S. Johnson et al., Electronic structure of Fe- vs. Ru-based dye molecules, J. Chem. Phys. 138, 044709 (2013)
-