用户工具

站点工具


atk:迁移率

差别

这里会显示出您选择的修订版和当前版本之间的差别。

到此差别页面的链接

两侧同时换到之前的修订记录前一修订版
后一修订版
前一修订版
后一修订版两侧同时换到之后的修订记录
atk:迁移率 [2018/05/10 09:49] – [E-相关方法] fermiatk:迁移率 [2018/05/10 10:09] – [载流子迁移率] fermi
行 7: 行 7:
 计算迁移率 $\mu$ 的关键是计算电子的弛豫时间 $\tau$。弛豫时间有两种计算方法: 计算迁移率 $\mu$ 的关键是计算电子的弛豫时间 $\tau$。弛豫时间有两种计算方法:
  
-  - 全角度(k,q)-相关:这种方法完整的考虑 $\tau$ 对电子和声子的波矢 $\mathbf{k}$ 和 $\mathbf{q}$ 的相关,即 $\tau=\tau(\mathbf{k},\mathbf{q})$。下面称为**(k,q)-相关方法**。 +  - 全角度(k,q)-相关:这种方法完整的考虑 $\tau$ 对电子和声子的波矢 $\mathbf{k}$ 和 $\mathbf{q}$ 的相关,即 $\tau=\tau(\mathbf{k},\mathbf{q})$。下面称为 **(k,q)-相关方法**。 
-  - 各向同性散射:这种方法仅考虑能量有关的 $\tau=\tau(E)$,假定 $\tau(E)$ 在动量空间中的变化是各向同性的。下面称为**E-相关方法**。+  - 各向同性散射:这种方法仅考虑能量有关的 $\tau=\tau(E)$,假定 $\tau(E)$ 在动量空间中的变化是各向同性的。下面称为 **E-相关方法**。
  
 下面的计算表明,两种方法得到的结果相差无几,但是第二种方法比第一种方法计算速度大大提高。 下面的计算表明,两种方法得到的结果相差无几,但是第二种方法比第一种方法计算速度大大提高。
行 427: 行 427:
 ==== 迁移率与温度的关系:(k,q)-相关方法和能量相关方法的结果 ==== ==== 迁移率与温度的关系:(k,q)-相关方法和能量相关方法的结果 ====
  
 +对能量相关方法更严格的测试是计算迁移率在室温范围对温度的依赖关系。
 +
 +  * 在(k,q)-相关方法里,只需要修改‘Mobility’里的target temperature即可。
 +  * 在能量相关方法里,计算的两步(线段上的k,q-相关弛豫时间和能量相关的弛豫时间)都需要在设定的温度下重复计算。
 +
 +从下图可以看出,在 $100 \mathrm{K} \leq T \leq 300 \mathrm{K}$ 范围里,两种方法计算的迁移率对温度的依赖关系都比较好的再现了$1/T$特性。
 +
 +{{ :atk:mobility_mu_vs_t.png?direct&600 |}}
  
  
atk/迁移率.txt · 最后更改: 2018/05/10 15:15 由 fermi

© 2014-2022 费米科技(京ICP备14023855号