用户工具

站点工具


adf:parameters

差别

这里会显示出您选择的修订版和当前版本之间的差别。

到此差别页面的链接

两侧同时换到之前的修订记录前一修订版
后一修订版
前一修订版
上一修订版两侧同时换到之后的修订记录
adf:parameters [2019/12/04 14:23] – [Main] liu.junadf:parameters [2020/09/17 11:09] liu.jun
行 10: 行 10:
 **Preset:**常用的选项包括Single Point、Frequencies、Geometry Optimization、Geometry Opt & Freqs、Linear Transit、Transition State Search。 **Preset:**常用的选项包括Single Point、Frequencies、Geometry Optimization、Geometry Opt & Freqs、Linear Transit、Transition State Search。
   * Single Point:计算某一种分子结构的性质(比如计算HOMO、LUMO,或者吸收光谱、NMR性质等等),之所以叫做单点,是指这种性质只由当前的这种结构就可以计算出来。其他选项,例如Fragment Analysis、Properties Only、Strict选项实际上等同于选择Single Point,具体可以参考[[adf:homolumo|]]、[[adf:uv]]、[[adf:NMRShielding]]   * Single Point:计算某一种分子结构的性质(比如计算HOMO、LUMO,或者吸收光谱、NMR性质等等),之所以叫做单点,是指这种性质只由当前的这种结构就可以计算出来。其他选项,例如Fragment Analysis、Properties Only、Strict选项实际上等同于选择Single Point,具体可以参考[[adf:homolumo|]]、[[adf:uv]]、[[adf:NMRShielding]]
-  * Frequencies:计算分子的振动性质,比如红外频率、以及热力学性质(与分子的振动有关)。详细使用参考[[adf:ir]] 
   * Geometry Optimization:对分子进行能量最小化,也就是所谓的结构优化。自然界存在的分子,其分子结构一般而言都是处于能量的最低点(当然可能是局域最低点,也可能是全局最低点),也就是说通过结构优化,可以得到分子的真实键长、键角、几何构型。一般而言,结构优化的可靠性是很高的,即使不太精确的泛函、比较小的基组,比较低的积分精度,得到的几何结构也和精确的参数相差很小(误差仅在0.001埃的量级),因此一般结构优化都不需要使用很高精度的方法和基组。基态、激发态的几何结构优化,都是使用该选项,但其他参数设置有差别。典型案例参考[[adf:geoopt]]、[[adf:geooptoftri]]、[[adf:如何计算荧光_磷光的寿命|]]   * Geometry Optimization:对分子进行能量最小化,也就是所谓的结构优化。自然界存在的分子,其分子结构一般而言都是处于能量的最低点(当然可能是局域最低点,也可能是全局最低点),也就是说通过结构优化,可以得到分子的真实键长、键角、几何构型。一般而言,结构优化的可靠性是很高的,即使不太精确的泛函、比较小的基组,比较低的积分精度,得到的几何结构也和精确的参数相差很小(误差仅在0.001埃的量级),因此一般结构优化都不需要使用很高精度的方法和基组。基态、激发态的几何结构优化,都是使用该选项,但其他参数设置有差别。典型案例参考[[adf:geoopt]]、[[adf:geooptoftri]]、[[adf:如何计算荧光_磷光的寿命|]]
   * Geometry Opt & Freqs:对分子进行结构优化,完成之后,自动计算优化好的那个结构的频率。如此就可以检查是不是存在负的频率(也就是所谓的虚频)   * Geometry Opt & Freqs:对分子进行结构优化,完成之后,自动计算优化好的那个结构的频率。如此就可以检查是不是存在负的频率(也就是所谓的虚频)
 +  * Frequencies:计算分子的振动性质,比如红外频率、以及热力学性质(与分子的振动有关)。详细使用参考[[adf:ir]]
   * Linear Transit:线性过渡。其用途参考[[adf:TSSexample]]   * Linear Transit:线性过渡。其用途参考[[adf:TSSexample]]
 +  * IRC:进行内反应坐标计算,用于验证过渡态、反应物、产物
   * Transition State Search:过渡态搜索。其用途参考[[adf:TSSexample]]   * Transition State Search:过渡态搜索。其用途参考[[adf:TSSexample]]
 +  * Properties Only:相当于Single Point
  
 **Total Charge:**指左边窗口整个体系总共带的电量。ADF2016以后的版本也支持将电荷指定到特定的片段上去(在Model > Constraint DFT中设置) **Total Charge:**指左边窗口整个体系总共带的电量。ADF2016以后的版本也支持将电荷指定到特定的片段上去(在Model > Constraint DFT中设置)
行 24: 行 26:
 **XC Functional:**指定计算所使用的泛函。参考:[[adf:functional|]] **XC Functional:**指定计算所使用的泛函。参考:[[adf:functional|]]
  
-**Relativity:**指定相对论的设置。一般对重元素必须使用,轻元素可用可不用。启更详细介绍,请参考[[adf:relativity|]]、[[adf:s-trelative]]、[[adf:nonrels-t|]]+**Relativity:**指定相对论的设置。一般对重元素必须使用,轻元素可用可不用。启更详细介绍,请参考[[adf:relativity|]]、[[adf:s-trelative]]
  
 **Basis Set:**设置计算所使用的基组,具体参考:[[adf:choosebasisset|]]、[[adf:diffbasisfordiffelement]]、[[adf:对同一种元素的不同原子指定不同基组|]] **Basis Set:**设置计算所使用的基组,具体参考:[[adf:choosebasisset|]]、[[adf:diffbasisfordiffelement]]、[[adf:对同一种元素的不同原子指定不同基组|]]
  
-**Frozen Core:**参考同上。但对于重元素,例如Cu、U,使用Core Large的结果往往更可靠。+**Frozen Core:**参考同上。但对于重元素,例如Cu、U,使用Core Large的结果往往更可靠。Forzen Core的含义:一般认为内层电子不参与化学反应,在原子中与在分子中几乎没有差别,因此为了节省计算量,对内层电子直接沿用原子轨道,只让外层电子参与自洽迭代,这样能够相当大的节省计算量。Core None指没有电子被冻芯,Core Large指最大程度地冻结电子,只保留最少的价电子参与迭代。具体可以为每种元素指定冻芯程度。设置方法参考:[[adf:diffbasisfordiffelement]]
  
 **Numerical Quality:**设置空间积分的精度,一般结构优化选用Normal,性质计算选用Good(实际上一般用Normal也可以,对结果影响很小),如果使用metaGGA或者Meta-Hybrid,则需要使用Very Good或者Excellent。NMR、ESR计算,必须选择Good或者Very Good。精度越高,表示将分子所在的空间划分的格点越细,这样计算量越大,计算得到的波函数也越精细。而meta泛函之所以选择高精度,是因为meta泛函与电子密度空间分布的二阶导相关。一般meta泛函只是在非常局域的轨道存在的时候使用,例如存在d电子、f电子的体系,这些体系电子密度在空间分布中震荡很剧烈,二次二阶梯度也较大。格点不够细致的话,会漏掉很多剧烈震荡的信息。 **Numerical Quality:**设置空间积分的精度,一般结构优化选用Normal,性质计算选用Good(实际上一般用Normal也可以,对结果影响很小),如果使用metaGGA或者Meta-Hybrid,则需要使用Very Good或者Excellent。NMR、ESR计算,必须选择Good或者Very Good。精度越高,表示将分子所在的空间划分的格点越细,这样计算量越大,计算得到的波函数也越精细。而meta泛函之所以选择高精度,是因为meta泛函与电子密度空间分布的二阶导相关。一般meta泛函只是在非常局域的轨道存在的时候使用,例如存在d电子、f电子的体系,这些体系电子密度在空间分布中震荡很剧烈,二次二阶梯度也较大。格点不够细致的话,会漏掉很多剧烈震荡的信息。
行 34: 行 36:
 {{:adf:adfinput02.jpg|}} {{:adf:adfinput02.jpg|}}
 =====Model===== =====Model=====
 +  * Coordinates:列出分子中每个原子的坐标。如果分子很大,那么可能需要拖动一下窗口的边沿改变一下窗口的尺寸,这样才会出现滚动条,从而看到所有的原子的坐标。鼠标点击某一行(这一行列出的是该原子的x、y、z坐标值)的时候,左边窗口的原子也会高亮显示。
 +  * Region:设置片段。参考[[adf:creatregion]]。
 +
  
   * Constraint DFT:如果正确的设置了片段(设置片段的方式,参考[[adf:creatregion]]),那么在此处可以为每个片段单独设置电荷。点击Change Constraints之后,在Region下拉框选择要设置的区域,然后在Charge里面为该区域指定电荷。   * Constraint DFT:如果正确的设置了片段(设置片段的方式,参考[[adf:creatregion]]),那么在此处可以为每个片段单独设置电荷。点击Change Constraints之后,在Region下拉框选择要设置的区域,然后在Charge里面为该区域指定电荷。
-  * Coordinates:列出分子中每个原子的坐标。如果分子很大,那么可能需要拖动一下窗口的边沿改变一下窗口的尺寸,这样才会出现滚动条,从而看到所有的原子的坐标。鼠标点击某一行(这一行列出的是该原子的x、y、z坐标值)的时候,左边窗口的原子也会高亮显示。 
   * DIM/QM:这是设置DIM/QM区域。通常用于计算大的团簇(几百上千原子)表面吸附分子的激发态、表面增强拉曼等等,如果将所有原子都精确计算的话,计算量就非常的大。DIM/QM做了分别对待,对部分区域(被设置为DIM part的区域)采用高效率的处理。   * DIM/QM:这是设置DIM/QM区域。通常用于计算大的团簇(几百上千原子)表面吸附分子的激发态、表面增强拉曼等等,如果将所有原子都精确计算的话,计算量就非常的大。DIM/QM做了分别对待,对部分区域(被设置为DIM part的区域)采用高效率的处理。
   * Electric Field:为分子设置一个外加的电场。这个电场可以是点电荷导致的电场,也可以是匀强电场。设置方式参考:[[adf:efield|]]   * Electric Field:为分子设置一个外加的电场。这个电场可以是点电荷导致的电场,也可以是匀强电场。设置方式参考:[[adf:efield|]]
-  * Geometry Constraints and Scan:进行Linear Transit计算,或者限制性结构优化参考[[adf:restrictopt]])的时候需要设置此处具体参考:[[adf:TSSexample]] +  * Geometry Constraints and LT:进行Linear Transit计算,或者限制性结构优化。分别参考[[adf:restrictopt]],以及[[adf:TSSexample]] 
-  * IRC与Linear Transit (old):这是内反应路径计算,以及旧的Linear Transit案,很常用。 +  * Intrinsic Reaction Coordinate(IRC):这是内反应坐标计算,用来验证过渡态、反应物、产物,该很常用。 
-  * MD via ASE基于DFT非周期性的分子动力学模拟。参数设置与一般的分子动力学类似。其中Sampling Frequency是指每模拟多少步,保存次坐标信息Simulation Method设置系综,可以参考ReaxFF模块的系综设置:[[adf: selectmethodofreaxff]]+  * Linear Transit (Old)势能面扫描的其中一种搜索方式
   * Minimum Energy Crossing Point:计算MECP的设置   * Minimum Energy Crossing Point:计算MECP的设置
-  * Nudged Elastic Band:使用NEB方法搜索过渡态。ADF原先有更为精确的过渡态搜索方法。此处的NEB方法是一种比较粗糙的过渡态搜索方法。但该方法很流行。 
-  * Region:设置片段。参考[[adf:creatregion]]。 
   * Solvation:考虑溶剂化效应的设置。如果要考虑溶剂化,则将Solvation method从none改为SCRF或者COSMO或SM12即可。其中COSMO和SCRF参考SCRF[[adf:cosmo]]。SM12的设置类似COSMO。   * Solvation:考虑溶剂化效应的设置。如果要考虑溶剂化,则将Solvation method从none改为SCRF或者COSMO或SM12即可。其中COSMO和SCRF参考SCRF[[adf:cosmo]]。SM12的设置类似COSMO。
   * Spin and Occupation:如果默认计算得到的电子占据方式不正确,并且体系有对称性,那么使用这个选项,手工地指定电子的占据方式。使用方法参考:[[adf:如何为对称性的分子指定电子的占据方式|]]   * Spin and Occupation:如果默认计算得到的电子占据方式不正确,并且体系有对称性,那么使用这个选项,手工地指定电子的占据方式。使用方法参考:[[adf:如何为对称性的分子指定电子的占据方式|]]
行 71: 行 73:
  
 ====TDA==== ====TDA====
-一种近似TDDFT,一定程度上,会降低TDDFT可靠度+一种近似TDDFT,一定程度上,会降低TDDFT可靠度。某些功能必须要求打开该功能,具体在保存任务的时候,会弹出提示。
  
 ====Number of Excitations==== ====Number of Excitations====

© 2014-2022 费米科技(京ICP备14023855号